Abstracts Prion 2022

Topic No.	First author	E-mail	Title	Topic
1.1.	Kraus, A.	Alk127@case.edu	High resolution structures of infectious mammalian prions reveal a common prion fold	Structure biology
1.2.	López Lorenzo, N.	nuria.lopez.lorenzo 2@usc.es	A non-PrP ^{Sc} PrP prion	Structure biology
1.3.	Lyudmyla, D.	dorosh@ualberta.c	In silico study of drugs docking against cellular, mutated and scrapie forms of prion protein	Structure biology
1.4.	Rathod, V.	vrathod@ualberta.c	Specific labeling of native PrPSc in RML-infected CAD5 cells using a single-chain fluobody	Structure biology
1.5.	Rathod, V.	vrathod@ualberta.c	In-vitro refolding of the 7kDa A117V GSS peptide	Structure biology
1.6.	Roseman, G.	Graham.roseman@ yale.edu	The Expression and Purification of GPI Anchored and Glycosylated PrPC for Use in Structural Studies	Structure biology
1.7.	Stepanova, M.	ms1@ualberta.ca	Structure and dynamics of alpha- sunuclein interaction with fibrillary seeds	Structure biology
1.8.	Zhang, Q.	Qzhang5@albany.e du	Chemical Synthesis of Prion Protein	Structure biology

2.1.	Altmeppen, H.C.	h.altmeppen@uke. de	The ADAM10-mediated shedding of human PrP: Cleavage site identification, antibody characterization, (patho)physiologic al insight and some peculiarities	Pathogenesis/mech anisms of neurodegeneration
2.2.	Balkema- Buschmann, A.	anne.buschmann@fli.de	BSE pathogenesis in the ileal Peyer's patches and the central and peripheral nervous system of young cattle 8 months post oral BSE challenge	Pathogenesis/mech anisms of neurodegeneration
2.3.	Bauer, S.	susanne.bauer@liu.se	Translational profiling of neuronal subtypes in pre-symptomatic fatal familial insomnia mice reveals TOR signaling in somatostatinexpressing neurons	Pathogenesis/mech anisms of neurodegeneration
2.4.	Benilova, I.	i.benilova@prion.u cl.ac.uk	A multiparametric imaging-based cellular assay sensitive to the toxicity of prioninfected brain tissue demonstrates that purified highly infectious scrapie prions are not directly neurotoxic	Pathogenesis/mech anisms of neurodegeneration

2.5.	Bizet, N.	Nicolas.bizat@icm-institute.org	Identifying promising therapeutics drugs entering the brain for genetic prion diseases in C. elegans.	Pathogenesis/mech anisms of neurodegeneration
2.6.	Block, A.	Ajb30666@creight on.edu	Mechanisms of adaptation of synthetic prions in hamsters	Pathogenesis/mech anisms of neurodegeneration
2.7.	Chang, S.C.	shengchun.chang@ucalgary.ca	PrP ^{Sc} aggregation state does not affect efficiency of peripheral infection in two CWD strains	Pathogenesis/mech anisms of neurodegeneration
2.8.	Cherry, P.	pearl.cherry@ucalg ary.ca	Loss of Rab7 activation leads to the impairments in cholesterol metabolism in prion infection.	Pathogenesis/mech anisms of neurodegeneration
2.9.	Dafou, D.	dafoud@bio.auth.g	Investigation of the role of RNA editing in immunoregulation in Creutzfeldt – Jakob disease pathogenesis	Pathogenesis/mech anisms of neurodegeneration
2.10.	Foliaki, S.	simote.foliaki@nih. gov	Fatal Familial Insomnia in a cerebral organoid model	Pathogenesis/mech anisms of neurodegeneration
2.11.	Gabizon. R.	gabizonr@gmail.co m	Granagard as an anti-aging and neuroprotective agent in animals and humans suffering from neurological diseases	Pathogenesis/mech anisms of neurodegeneration
2.12.	Groveman, B.	Bradley.groveman @nih.gov	Prion Disease in Human Cerebral Organoids	Pathogenesis/mech anisms of neurodegeneration

2.13.	Hay, A.	Arielle.Hay@colos tate.edu	Adipose-Derived Mesenchymal Stromal Cells Decrease Prion- Induced Glial Inflammation	Pathogenesis/mech anisms of neurodegeneration
2.14.	Jackson, W.	Walker.jackson@li u.se	Cell type-specific translatome signatures in pre- onset prion disease mice	Pathogenesis/mech anisms of neurodegeneration
2.15.	Jang, B.	jang@hallym.ac.kr	Citrullinated GAPDH and vimentin in the pathology of prion diseases	Pathogenesis/mech anisms of neurodegeneration
2.16.	Kincaid, A.	akincaid@creighto n.edu	Mast Cells in Human Carotid Bodies Express PrP ^C	Pathogenesis/mech anisms of neurodegeneration
2.17.	Koshy, S.	SamKoshy@creigh ton.edu	Fast Axonal Transport of PrP ^{Sc}	Pathogenesis/mech anisms of neurodegeneration
2.18.	Krasemann, S.	s.krasemann@uke. de	mGluR5 inhibition delays cognitive decline and incubation time in a mouse model for prion disease, but only if applied before onset of symptoms	Pathogenesis/mech anisms of neurodegeneration
2.19.	Lavigna, G.	giada.lavigna@mar ionegri.it	Doxycycline rescues recognition memory and circadian motor rhythmicity but does not prevent terminal disease in fatal familial insomnia mice	Pathogenesis/mech anisms of neurodegeneration

2.20.	Mead, S/Hill, E.	s.mead@prion.ucl. ac.uk/e.hill@prion. ucl.ac.uk	Knockout Mice for the Sporadic CJD Risk Gene STX6 are Overtly Healthy, but have Extended Incubation Times to Mouse Prions	Pathogenesis/mech anisms of neurodegeneration
2.21.	Otero, A.	aliciaogar@unizar.e	Identification of biomarkers associated with endoplasmic reticulum stress and proteasome impairment in natural scrapie	Pathogenesis/mech anisms of neurodegeneration
2.22.	Pal, R.	R.Pal@sms.ed.ac.u k	Innate immune tolerance in microglia does not impact on CNS prion disease	Pathogenesis/mech anisms of neurodegeneration
2.23.	Park, S.J.	sypark@chonbuk.a c.kr	Calcium-dependent serine-threonine phosphatase and calcineurin inactivation mediated by baicalein attenuates prion protein- mediated neuronal cell damage	Pathogenesis/mech anisms of neurodegeneration
2.24.	Schneider, B.	benoit.schneider@parisdescartes.fr	Loss of prion protein control of glucose metabolism contributes to neurodegeneration: dichloroacetate as a promising medicine to treat Creutzfeldt-Jakob disease.	Pathogenesis/mech anisms of neurodegeneration

2.25.	Sklaviadis, T.	sklaviad@pharm.a uth.gr	RNA Editing in Neurodegenerative Disorders	Pathogenesis/mech anisms of neurodegeneration
2.26.	Slota, J.	slotaj@myumanito ba.ca; jessy.slota@phac- aspc.gc.ca	Single cell transcriptional profiling of the cortex and hippocampus from mice infected with RML scrapie	Pathogenesis/mech anisms of neurodegeneration
2.27.	Striebel, J.	striebelj@nih.gov	Mechanisms of prion-induced damage in retina: Roles of microglia and sites of PrPSc deposition	Pathogenesis/mech anisms of neurodegeneration
2.28.	Wang, Y.	yuewang306@gma il.com	Loss of homeostatic microglia in prion diseases	Pathogenesis/mech anisms of neurodegeneration
2.29.	Zattoni, M.	mzattoni@sissa.it	Serpins in prion diseases	Pathogenesis/mech anisms of neurodegeneration
3.1.	Arshad, H.	Hamza.arshad@ma il.utoronto.ca	Cellular Model of Cross Species Prion Infection Utilizing Bank Vole PrP	Protein biology- function, conversion, dysfunction
3.2.	Berretta, A.	a.berretta@prion.uc l.ac.uk	Formation and localization of disease-associated PrP aggregates in primary neuronal and glial culture systems	Protein biology- function, conversion, dysfunction
3.3.	Bolakhrif, N.	Najoua.bolakhrif@hhu.de	Expression and characterization of the human full-length prion protein in Leishmania tarentolae	Protein biology- function, conversion, dysfunction

3.4.	Halim, H.A.	Hazim.halim.18@u cl.ac.uk	Infection of Neuronal Cells by extracellular PrP fibrils	Protein biology- function, conversion, dysfunction
3.5.	Innocenti, N.	nicole.innocenti@u nitn.it	Chemical Optimization of Cellular Prion Protein Degraders	Protein biology- function, conversion, dysfunction
3.6.	Jack, K.	k.jack@prion.ucl.a c.uk	The fidelity of prion templating in vitro depends on the identity of the prion strain	Protein biology- function, conversion, dysfunction
3.7.	Kachkin, D.	Daniel.Kachkin@ic loud.com	RAD51 demonstrates amyloid properties in vivo and in vitro	Protein biology- function, conversion, dysfunction
3.8.	Karner, D.	dubravka.karner@ uniri.hr	Immunological role of cellular prion protein (PrP ^C) during cytomegaloviral infection	Protein biology- function, conversion, dysfunction
3.9.	Karpuj, M.	Mvkarpuj@braude. ac.il	The combinatorial effect of chronic drug intake and microgravity on Amyloid formation	Protein biology- function, conversion, dysfunction
3.10.	Lawson, V.	vlawson@unimelb. edu.au	Modulation of PrP ^C expression affects cancer progression in vivo.	Protein biology- function, conversion, dysfunction
3.11.	Masone, A.	antonio.masone@ marionegri.it	Generation and characterization of a PrP-HaloTag chimera to study the cellular trafficking and metabolism of PrP	Protein biology- function, conversion, dysfunction

3.12.	Masone, A.	antonio.masone@ marionegri.it	A tetracationic porphyrin with dual anti-prion activity	Protein biology- function, conversion, dysfunction
3.13.	Matamoros Angles, A.	a.matamorosangles @uke.de	Behavioral deficits, learning impairment, and enhanced hippocampal excitability in co- isogenic Prnp ^{ZH3/ZH3} mice	Protein biology- function, conversion, dysfunction
3.14.	Mohammadi, B.	b.mohammadi@uk e.de	Fighting prion diseases with released PrP (fragments): transgenic overexpression of N1(Fc) prolongs incubation time in RML-infected mice	Protein biology- function, conversion, dysfunction
3.15.	Moško, T.	tibor.mosko@lf1.c uni.cz	Photodynamic inactivation of prions reduces infectivity in mouse bioassay but not seeding activity in RT-QuIC.	Protein biology- function, conversion, dysfunction
3.16.	Nyström, S.	Sofie.nystrom@liu.	Amyloidogenesis of SARS-COV-2 Spike protein cause impaired fibrinolysis in vitro	Protein biology- function, conversion, dysfunction
3.17.	Puig, B.	b.puig- martorell@uke.de	A role for PrP ^C in the cellular uptake of extracellular vesicles	Protein biology- function, conversion, dysfunction

3.18.	Sampedro-Torres- Quevedo, C.	csampedro@cicbio gune.es	Revisiting phylogeny within the class Mammalia using the prion protein sequence from hundreds of species	Protein biology- function, conversion, dysfunction
3.19.	Sandberg, M.K.	m.sandberg@prion .ucl.ac.uk	Strain interference in brain from FVB mice exposed to ME7 and RML prions.	Protein biology- function, conversion, dysfunction
3.20.	Sellitto, S.	Stefano.Sellitto@u sz.ch	Investigate the genetic and molecular landscape of the hnRNP K cellular essentiality by performing unbiased CRISPR screens	Protein biology- function, conversion, dysfunction
3.21.	Soukup, J.	Jakub.soukup@lf1.cuni.cz	Large and small extracellular vesicles differ in the level of prion associated infectivity in cell culture	Protein biology- function, conversion, dysfunction
3.22.	Trevisan, C.	Chiara.Trevisan@u sz.ch	Arrayed CRISPR activation screen of the human transcription factors to identify modifiers of prion protein PrPC	Protein biology- function, conversion, dysfunction
3.23.	True, H.	heather.true@wustl .edu	Prion conformer- dependent Chaperone interactions in a chaperonopathy	Protein biology- function, conversion, dysfunction

3.24.	Vanni, I.	ilaria.vanni@iss.it	An optimized western blot method for the analysis of PrP ^C endoproteolytic cleavages	Protein biology- function, conversion, dysfunction
3.25.	Wang, Fei	Fei.Wang.1@uth.t mc.edu	Faithful propagation of prion strain- specific conformation to recombinant protein	Protein biology- function, conversion, dysfunction
3.26.	Willows, S.	Steven.Willows@n rc-cnrc.gc.ca	PrP shedding from mast cells is dependent upon proteases released during degranulation	Protein biology- function, conversion, dysfunction
3.27.	Younas, N.	neelam.younas@m ed.uni- goettingen.de	Interactome remodeling of prion/prion-like proteins in response to oxidative stress	Protein biology- function, conversion, dysfunction
3.28.	Zeni, I.	ilaria.zeni@unitn.it	An imaging-based bimolecular fluorescence complementation assay to screen for unconjugated degraders for the cellular prion protein.	Protein biology- function, conversion, dysfunction
4.1.	Abu Rumeileh, S.	samir.aburumeileh @uk-halle.de	Cerebrospinal fluid levels of prodynorphin and proenkephalin are differentially altered in sporadic Creutzfeldt-Jakob disease subtypes and reflect the divergent neuronal targeting	Human disease

4.2.	Andreoletti, O.	o.andreoletti@envt. fr	ARR/ARR genotype sheep show no resistance to ovine adapted c- BSE infection by the oral route	Human disease
4.3.	Andreoletti, O.	o.andreoletti@envt. fr	Prion infectivity accumulation in CJD patients peripheral tissues and its implication for public health	Human disease
4.4.	Appleby, B.	Bsa35@case.edu	Comprehensive Characterization of Genetic Creutzfeldt- Jakob Disease Caused by the E200K Mutation in the U.S.	Human disease
4.5.	Astashonok, A.	micro.87@mail.ru	Pathomorhological analysis and atomic force microscopy examination of infectious prion protein, isolated from the brain with Creutzfeldt-Jakob disease	Human disease
4.6.	Baiardi, S.	simone.baiardi6@u nibo.it	Inside the kuruplaque variant (MV2K) of sporadic Creutzfeldt-Jakob disease: a detailed clinical and histomolecular appraisal	Human disease
4.7.	Balash, Y.	yacovbalash@gmai l.com	Incidences Trends of Creutzfeldt- Jakob Disease in Israel	Human disease

4.8.	Benedetti, V.	Valerio.benedetti@izsto.it	A miRNA fingerprint in Plasma-derived extracellular vesicles of hSOD1G93A transgenic swine	Human disease
4.9.	Canaslan Eyyuboglu, S.	sezgi.canaslan@me d.uni-goettingen.de	Validation of Plasma- and CSF- Neurofilament light chain as a marker for sporadic Creutzfeldt-Jakob disease	Human disease
4.10.	Da Silva Correia, S.M.	Scorreia051@gmai l.com	Optimization of the RT-QuIC in Prion disease diagnostic	Human disease
4.11.	Dafou, D.	dafoud@bio.auth.g	Identification of biomarkers panels for differential diagnosis of Neurodegenerative Disorders	Human disease
4.12.	Dafou, D.	dafoud@bio.auth.g	Isolation and Characterization of Natural Bioactive Polyphenols with Antioxidant and Anti-Prion Properties	Human disease
4.13.	Denouel, A.	angeline.denouel@aphp.fr	Study of sporadic Creutzfeldt-Jakob disease mortality in France between 1992 and 2016 using an Age- Period-Cohort model	Human disease
4.14.	Dimitriadis, A.	ucnvdim@ucl.ac.u k	Single-cell transcriptomics of mammalian prion diseases	Human disease

4.15.	Fernandez Flores, L.C.	leticiacamila.fernan dezflores@med.uni- goettingen.de	SFPQ as a plasma biomarker to distinguish Creutzfeldt - Jakob disease and rapidly progressive Alzheimer's disease	Human disease
4.16.	Fischer, AL.	anna- lisa.fischer@med.u ni-goettingen.de	The cellular prion protein as a potential receptor in neurodegenerative diseases	Human disease
4.17.	Fleming, M.	fleming@ualberta.c	Optimizing prion vaccination in a transgenic mouse model of Gerstmann- Sträussler-	Human disease
4.18.	<u>Gelpi</u> / Parchi	ellen.gelpi@medun iwien.ac.at & piero. parchi @unib o.it	The VM1 subtype of sporadic Creutzfeldt-Jakob disease: phenotypic and molecular characterization of a novel subtype of human prion disease	Human disease
4.19.	Gilch, S.	sgilch@ucalgary.ca	Transmission of Cervid Prions to Humanized Mice Demonstrates the Zoonotic Potential of CWD	Human disease
4.20.	Igel, A.	Angelique.igel@inr ae.fr	Two new decontamination process effective against the variant-and the sporadic-VV2 CJD prion strains	Human disease

4.21.	Jansen, G.H.	gjansen@eorla.ca	Neuropathology of 8 patients of the New Brunswick cluster of Neurological Syndrome of Unknown Cause; human Chronic Wasting Disease or blue-green algae?	Human disease
4.22.	Klotz, S.	sigrid.klotz@medu niwien.ac.at	Increasing incidence of Creutzfeldt-Jakob- disease in Austria – An epidemiological Update	Human disease
4.23.	Kong, Q.	qxk2@case.edu	High transmissibility of splenic prions in cervidized transgenic mice as a diagnostic marker for CWD infection in human	Human disease
4.24.	Ladhani, K.	kaetan.ladhani@nib sc.org	Comparision of PMCA perfomance using identical sets of vCJD tissue homogentes spiked into blood components.	Human disease
4.25.	Liberski, P.P.	ppliber@csk.umed. lodz.pl	What happened to the pierrot? — painting alterations of the patient with Alzheimer's disease and Lewy body dementia	Human disease

4.26.	Lindner, E.	ewald.lindner@me dunigraz.at	Influence of Cobalamin levels on Prion protein expression	Human disease
4.27.	M. Charco, J.	jmoreno.atlas@cicb iogune.es	GSS A117V and a mouse model expressing bank vole PrPC as a fast and versatile model to monitor potential treatments for human prion diseases.	Human disease
4.28.	Maddox, R.	rmaddox@cdc.gov	Prion disease incidence, United States, 2003-2020	Human disease
4.29.	Maddox, R.	rmaddox@cdc.gov	Mortality surveillance of persons potentially exposed to chronic wasting disease	Human disease
4.30.	Matsubayashi, T.	taiki.matsubayashi5 5135@gmail.com	Specific electroencephalogra m features in the very early phases of sporadic Creutzfeldt–Jakob disease	Human disease
4.31.	McKenzie, N.	nmckenz2@ed.ac.u k	Performance of second generation CSF RT-QuIC in a clinical CJD Surveillance setting	Human disease
4.32.	Mostoslavsky, G.	gmostosl@bu.edu	Modeling Creutzfeldt-Jakob Disease using human iPSC- derived Neurons and Brain Organoids	Human disease

4.33.	Myskiw, J.	myskiwj@myuman itoba.ca	Strain Profiles of Sporadic Creutzfeldt-Jakob Disease in Canada	Human disease
4.34.	Nakagaki, T.	t- nakagaki@nagasak i-u.ac.jp	An undiagnosed case of prion disease found in donated bodies for anatomical practice of medical students	Human disease
4.35.	Nurit, O.	nurito@tlvmc.gov.i	Cerebrospinal fluid (CSF) and Plasma Biomarkers in patients with genetic Creutzfeldt-Jakob disease (gCJD) and healthy relatives, carriers of the E200K mutation: Results from an ongoing longitudinal study.	
4.36.	Rayner, M.	m.rayner@ucl.ac.u k	Development of a cell-based bioassay to propagate human variant Creutzfeldt-Jakob disease prions.	Human disease
4.37.	Schmitt-Ulms, G.	g.schmittulms@uto ronto.ca	Targeting sodium- potassium pumps for the treatment of prion diseases	Human disease
4.38.	Sikorska, B.	beata.sikorska@um ed.lodz.pl	Multi-centric plaques in kuru: a fingerprint of its origin	Human disease

4.39.	Silbak, R.	silbakrawan@gmai l.com	DTI Abnormalities in Healthy E200K Carriers May Serve as an Early Biomarker for Genetic Creutzfeldt- Jakob Disease (gCJD)	Human disease
4.40.	Suleiman, S.	ssuleim2@ed.ac.uk	Faithful propagation of vCJD prions from frozen and fixed central nervous system and appendix tissues using highly sensitive Protein Misfolding Cyclic Amplification	Human disease
4.41.	Tsukamoto, T.	tukamoto@ncnp.go .jp	Prion disease features in Japan according to the national surveillance from 1999 to 2022	Human disease
4.42.	Wadsworth, J.	j.wadsworth@prio n.ucl.ac.uk	Transmission properties of 129MV vCJD prions in humanized transgenic mice	Human disease
4.43.	Windl, O.	Otto.Windl@med.u ni-muenchen.de	A case of probable Creutzfeldt-Jakob disease with the PrP G114V mutation	Human disease
4.44.	Xanthopoulos, K.	kostas.sharma@gm ail.com	Evaluation of the therapeutic action of poly(propylene Imine) glycodendrimers in prion disease mouse model	Human disease

4.45.	Zou, WQ.	wxz6@case.edu	Characterization of a novel prion protein mutation of serine to proline at residue 245 linked to VPSPr-like phenotype in vivo and in vitro	Human disease
5.1.	Larsen, P.	plarsen@umn.edu	Characterizing inhibitory effects of metal ions on CWD prion amyloid formation using RT-QuIC	Animal disease
5.2.	Arifin, M.I.	maria.arifin@ucalg ary.ca	Heterozygosity at cervid <i>Prnp</i> codon 138 progressively blocks prion conversion <i>in vitro</i> and partly confines prion propagation to the periphery in knock-in mice	Animal disease
5.3.	Barrio, T.	tomas.barrio@envt.	Glycans are not necessary to maintain the pathobiological features of Bovine Spongiform Encephalopaty	Animal disease
5.4.	Benavente, M.R.	Maria.r.benavente @uth.tmc.edu	Large-scale PMCA screening of retropharyngeal lymph nodes and in white-tailed deer and comparisons with ELISA and IHC: the Texas CWD study.	Animal disease

5.5.	Betancor, M.	mbetancorcaro@g mail.com	Preclinincal biomarkers in scrapie: assessment of neurogranin (Ng) and neurofilament light chain (NfL)	Animal disease
5.7.	Bolea, R.	rbolea@unizar.es	Proteomic analysis of cerebrospinal fluid in prion diseases	Animal disease
5.8.	Bravo-Risi, F.	Francisca.c.bravori si@uth.tmc.edu	Detection of CWD prion in feces of naturally infected, pre-symptomatic, North American white-tailed deer.	Animal disease
5.9.	Bravo-Risi, F.	Francisca.c.bravori si@uth.tmc.edu	Protein misfolding cyclic amplification (PMCA) as an ultra-sensitive technique for the screening of CWD prions in different sample types.	Animal disease
5.10.	Caredio, D.	davide.caredio@us z.ch	High resolution spatial and temporal analysis of prion diseases	Animal disease
5.11.	Christenson, P.	chri4161@umn.ed u	A Field- Deployable Diagnostic Assay for the Visual Detection of Chronic Wasting Disease Prions	Animal disease

5.12.	Coleman, B.	Brianne.Coleman@colostate.edu	Longitudinal Profile of Specific Blood Cell Phenotypes Critical to Prionemia in Deer Inoculated with Chronic Wasting Disease	Animal disease
5.13.	DeFranco. J.	Joseph.DeFranco @colostate.edu	Assessing the effect of inoculation route on pathogenesis in CWD-susceptible gene targeted mice	Animal disease
5.14.	Denkers, N.	nddenk@colostate. edu	Bioassay of Chronic Wasting Disease Prions Derived from Brain and Lymph Node in White-tailed Deer	Animal disease
5.15.	Denkers, N.	nddenk@colostate. edu	Effects of Montmorillonite Clay Adsorption on Chronic Wasting Disease Prion Seeding Activity and Infectivity in Deer	Animal disease
5.16.	Denkers, N.	nddenk@colostate. edu	Shedding of Chronic Wasting Disease Prions in Multiple Excreta Throughout Disease Course in White-tailed Deer	Animal disease

5.17.	Díaz Domínguez, C.M.	cdiaz@cicbiogune.	Evaluation of naturally occurring polymorphic variants of the PrP from cervids as RT-QuIC substrates for the detection of multiple CWD strains	Animal disease
5.18.	Duque Velasquez, C.	duquevel@ualberta .ca	Peripheral prion accumulation in CWD-infected animals	Animal disease
5.19.	Duque Velasquez, C.	duquevel@ualberta .ca	Adaptation of chronic wasting disease (CWD) prion strains in hosts with different PRNP genotypes	Animal disease
5.20.	Dzhabrailov, I.	idzhabra@ualberta. ca	Optimizing inactivation of CWD prions with humic acid	Animal disease
5.21.	Frese, A.	Alexis.Frese@usda .gov	The chronic wasting disease agent from white-tailed deer fails to adapt to sheep upon second passage	Animal disease
5.22.	Frid, K.	Kati.frid@gmail.co m	Prion disease in TgMHu2ME199K mice skeletal muscle	Animal disease

5.23.	Gonçalves-Anjo, N.	nunoanjo@utad.pt	Chronic wasting disease risk assessment in Portugal: analysis of variability and genetic structure of the Portuguese roe deer population	Animal disease
5.24.	Greenlee, J.	Justin.Greenlee@u sda.gov	Cattle with the EK211 PRNP polymorphism are susceptible to the H-type bovine spongiform encephalopathy agent from either E211K or wild type donors after oronasal inoculation	Animal disease
5.25.	Gurau, M.R.	otelea_maria@yaho o.com	ROMANIAN GOATS' GENETIC VARIABILITY OF PRNP GENE	Animal disease
5.26.	Haley, N.	nhaley@midwester n.edu	Selective breeding for rare PRNP variants in farmed whitetail deer in the management of chronic wasting disease	Animal disease
5.27.	Harpaz, E.	erez.harpaz@nmbu .no	No evidence of uptake or propagation of reindeer CWD prions in environmentally exposed sheep	Animal disease
5.28.	Hassan, M.F.	drfaruqmatee@yah oo.com	Protein gene sequences analysis in twelve sheep breeds of Pakistan	Animal disease

5.29.	Hauksdóttir, E.	evahauks@hi.is	Prion genotypes in Icelandic scrapie flocks: The effect of removing rams with a VRQ allele from Icelandic breeding stations	Animal disease
5.30.	Herbst, A.	aherbst@usgs.gov	Proteomic analysis of cerebral spinal fluid and plasma from white-tailed deer infected with CWD	Animal disease
5.31.	Heyer, N.	nick.heyer@colosta te.edu	Characterization of miRNA changes in Chronic Wasting Disease in Relation to Developing Early Detection Models	Animal disease
5.32.	Houston, E.F.	Fiona.houston@ro slin.ed.ac.uk	Subclinical infection in sheep exposed to low doses of prions by blood transfusion.	Animal disease
5.33.	Jang, G.	snujang@snu.ac.kr	Germ-line transmission and generation of PRNP mutated cattle using CRISPR-Cas9	Animal disease
5.34.	Kanata Tsiami, E.	ekanata@bio.auth.g	Prion photocatalytic inactivation	Animal disease
5.35.	Karapetyan, Y.	yervandkar@gmail. com	Long double stranded RNA is detected in 22L scrapie infected mouse brains	Animal disease

5.36.	Kim, YC.	kych@jbnu.ac.kr	Large-scale lipidomic profiling identifies novel potential biomarkers for prion diseases and highlights lipid raft- related pathways	Animal disease
5.37.	Kong, Q.	qxk2@case.edu	Stable and highly zoonotic cervid prion strain is possible	Animal disease
5.38.	Konold, T.	timm.Konold@aph a.gov.uk	Scratch a downer cow: improving clinical diagnosis of atypical BSE in cattle	Animal disease
5.39.	Kraft, C.	ckraft@colostate.ed u	Detection of Chronic Wasting Disease Muscle Tissue by PMCA RT-QuIC	Animal disease
5.40.	Kraft, C.	ckraft@colostate.ed u	Nasal swab detection of prion shedding in CWD- infected white- tailed deer	Animal disease
5.41.	Kuznetsova, A.	alsu@ualberta.ca	PrP ^{CWD} detection in soils from CWD endemic regions	Animal disease
5.42.	Lambert, Z.	zlambert@iastate.e du / Zoe.Lambert@usda .gov	Second passage of scrapie in white-tailed deer is discernable from chronic wasting disease.	Animal disease
5.43.	Martinez Moreno, D.	Dam3@ualberta.ca	Chronic Wasting Disease Interaction with Agricultural Crops	Animal disease

5.44.	Mazza. M.	maria.mazza@izsto .it	Are rapid tests and confirmatory western blot for cattle and small ruminants reliable tools for the diagnosis of Chronic Wasting Disease in Europe?	Animal disease
5.45.	McNulty, E.	eem@colostate.edu	Multigenerational Chronic Wasting Disease Mother to Offspring Transmission in Reeves' muntjac deer	Animal disease
5.46.	Miyazawa, K.	miyazawak@affrc. go.jp	Appearance of new scrapie prion strain by the conformational rearrangement of parental scrapie prion strain through serial transmission in wild-type mice	Animal disease
5.47.	Morales, R.	rodrigo.moralesloy ola@uth.tmc.edu	Nasal bot: an emerging vector for natural chronic wasting disease transmission	Animal disease
5.48.	Nalls, A.	amy.nalls@colostat e.edu	Robust hematogenous prion detection in CWD-infected deer throughout disease course.	Animal disease
5.49.	Ness, A.	amness@ualberta.c	Chronic wasting disease prions in mule deer interdigital glands	Animal disease

5.50.	Nicholson, E.	Eric.Nicholson@us da.gov	Serial RT-QuIC to increase sensitivity and specificity for CWD	Animal disease
5.51.	Parrie, L.E.		Assessment of peripheral vs. brain CWD prions in a gene-targeted mouse model	Animal disease
5.52.	Pereira, J.	jcpereira@utad.pt	Determining prion protein gene (PRNP) genetic variability in portuguese cervidae population. An important task in chronic wasting disease (CWD) risk assessment projet in Portugal.	Animal disease
5.53.	Pérez Lázaro, S.	soniaperez@unizar. es	Blood microRNA sequencing in prion diseases	Animal disease
5.54.	Raisley, E.	eraisley@colostate. edu	Transmission properites of North American sheep scrapie prions in transgenic mouse models	Animal disease
5.55.	Rowden, G.	rowde002@umn.e	Standardization of Data Analysis for RT-QuIC-based detection of Chronic Wasting Disease	Animal disease
5.56.	Sandoval, A.	Audrey.Sandoval @rams.colostate.ed u	In utero transmission of chronic wasting disease in free- ranging white- tailed deer	Animal disease

5.57.	Schätzl, H.	hschaetz@ucalgary .ca	Combining vaccination with genetic resistance to protect caribou against CWD	Animal disease
5.58.	Sohn, H.J.	shonhj@korea.kr	Detection of PrP ^{CWD} in ear skin from CWD affected cervid	Animal disease
5.59.	Sohn, H.J.	shonhj@korea.kr	Distribution of PrP ^{CWD} in tissues of CWD affected sika deer using RT-QuIC following experimental oral transmission	Animal disease
5.60.	Soto, P.	Paulina.i.sotosoto @uth.tmc.edu	Chronic wasting disease detection in environmental and biological samples from a taxidermy site.	Animal disease
5.61.	Soto, P.	Paulina.i.sotosoto @uth.tmc.edu	Carrot plants as potential vectors for CWD transmission.	Animal disease
5.62.	Spiropoulos, J.	John.spiropoulos@ apha.gov.uk	Transmission of CH1641 in cattle	Animal disease
5.63.	Sun, J.	Julianna.sun@colo state.edu	Detailed investigation of the role played by residue 226 of PrP in chronic wasting disease pathogenesis and strain selection	Animal disease
5.64.	Telling, G.	glenn.telling@colo state.edu	A diverse spectrum of novel strains among Nordic cervids with chronic wasting disease.	Animal disease

5.65.	Thomas, C.	Charlotte.Thomas @ed.ac.uk	Comparison of in vitro tests (PMCA and RT-QuIC) and bioassay for longitudinal prion detection in preclinical blood samples from BSE infected sheep.	Animal disease
5.66.	Thorgeirsdottir, S.	stef@hi.is	Widespread search for potentially protective prion protein variants in the Icelandic sheep population delivers promising results.	Animal disease
5.67.	Torres J.M. / Canoyra S. SEP	jmtorres@inia.csic. es / sara.canoyra@inia. csci.es	Conformational shift as the evolutionary mechanism for classical BSE emergence from atypical scrapie	Animal disease
5.68.	Vidal Barba, E.	enric.vidal@irta.cat	ATYPRION project: assessing the zoonotic potential of interspecies transmission of CWD isolates to livestock (preliminary results).	Animal disease
5.69.	Waqas, T.	waqas.tahir@inspe ction.gc.ca	Successful Oral Transmission of Atypical BSE in Cattle	Animal disease

5.70.	Yuan, Q.	qiyuan@creighton. edu	Quantitative measurements of chronic wasting disease prions recovered from swab samples and environmentally relevant surfaces	Animal disease
6.1.	Berrone, E.	elena.berrone@izst o.it	The Amyloid Aggregation Study on board The International Space Station	Proteinopathies: Alzheimer's disease
6.2.	Concha, L.	luis@ampriondx.co m	_	Proteinopathies: Alzheimer's disease
6.3.	Majbour, N.	n.majbour@ucl.ac. uk	Biomarker-driven phenotyping for Alzheimer's disease and related dementia	Proteinopathies: Alzheimer's disease
6.4.	Pritzkow, S.	Sandra.Pritzkow@uth.tmc.edu	Application of PMCA to understand CWD prion strains, species barrier and zoonotic potential	Proteinopathies: Alzheimer's disease
6.5.	Ribeiro, L.	lf.ribeiro@outlook. fr	Titanium dioxide and carbon black nanoparticles disrupt neuronal homeostasis via excessive activation of PrP ^c signaling	Proteinopathies: Alzheimer's disease

6.6.	Ruiz Riquelme, A.I.	alejandroivan.ruiz @usc.es	AMYSEEDS: TARGETING AMYLOID BETA SEEDS AT THE INITIAL STAGE OF ALZHEIMER'S DISEASE	Proteinopathies: Alzheimer's disease
6.7.	Shafiq, M.	m.shafiq@uke.de	Extracellular vesicles in the pathophysiology of Alzheimer's disease: understanding the role of the prion protein	Proteinopathies: Alzheimer's disease
6.8.	Willbold, D.	d.willbold@fz- juelich.de	Ex vivo target engagement of the Abeta oligomer disassembling compound RD2 in patient derived brain homogenates	Proteinopathies: Alzheimer's disease
6.9.	Zafar, S.	sz_awaan@yahoo. com	Prion-like characteristics of Amyloid-β deriving clinical variants of Alzheimer's disease	Proteinopathies: Alzheimer's disease
7.1.	Dellavalle, S.	sofia.dellavalle@au sl.bologna.it	In vivo assessment of Lewy body copathology in idiopathic normal pressure hydrocephalus: Prevalence and associations with clinical features and surgery outcome	Proteinopathies: Synuclein

7.2.	Farris, C.	carly@ampriondx.c	Seed Amplification Assay accurately detects misfolding α-Synuclein in CSF samples from PD and iRBD patients of the DeNoPa cohort.	Proteinopathies: Synuclein
7.3.	Hoyer, W.	wolfgang.hoyer@h hu.de	Clustering of human prion protein and α-synuclein oligomers requires the prion protein N-terminus	Proteinopathies: Synuclein
7.4.	Milovanovic, D.	dragomir.milovano vic@dzne.de	alpha-Synuclein as a surfactant of synaptic condensates	Proteinopathies: Synuclein
7.5.	Sevenich, M.	marc.sevenich@pri avoid.com	Stabilization of monomeric α-synuclein by all-D-enantiomeric peptide ligands as therapeutic strategy for Parkinson's disease and other synucleinopathies	Proteinopathies: Synuclein
7.6.	Xylaki, M.	maria.xylaki@med. uni-goettingen.de	Pathological alpha- synuclein profiling in nasal specimens of patients with Parkinson's disease	Proteinopathies: Synuclein
7.7.	Zanusso, G.	gianluigi.zanusso@ univr.it	Improved detection of pathological α-synuclein in olfactory mucosa of patients with Parkinson's disease	Proteinopathies: Synuclein

8.1.	Blömeke, L.	l.bloemeke@fz- juelich.de	Quantitative Detection of α- Synuclein and Tau Oligomers and other Aggregates by Digital Single Particle Counting	Proteinopathies: Tau
8.2.	Browne, D.	dfb50@case.edu	Hypochlorous acid solutions reduce disease-associated tau seeding activity	Proteinopathies: Tau
8.3.	Costa, M	FreireDiasdaCosta. Marcia@mh- hannover.de	A non-radioactive cell-free assay for detection of direct PERK activators	Proteinopathies: Tau
8.4.	Standke, H.	hgs40@case.edu	4R tau seeds are a prevalent copathology across neurodegenerative diseases	Proteinopathies: Tau
8.5.	Yarahmady, A.	yarahmad@ualbert a.ca	Structural and Kinetic Characterization of Disease Associated Tau Mutants	Proteinopathies: Tau
9.1.	Bizingre, C.	chloe.bizingre@par isdescartes.fr	Cross-disease implication of the PrP ^C -PDK1-TACE pathway in amyloid-based neurodegenerative diseases.	Other proteinopathies
9.2.	Candelise, N.	niccolo.candelise@gmail.com	Effect of the induction of chronic stress on cellular models of Amyotrophic Lateral Sclerosis	Other proteinopathies

9.3.	Cécile, V.	Cecile.voisset@ins erm.fr	New Anti-prion compounds able to reduce the pathologic aggregation of alpha-synuclein and PABPN1 and to lessen ER stress	Other proteinopathies
9.4.	Korth, C.	ckorth@hhu.de	Aggregation and misassembly of the Disrupted-in-schizophrenia 1 (DISC1) protein defines a subset of patients with schizophrenia and recurrent affective disorders	Other proteinopathies
9.5.	Moreno, J.	Julie.moreno@colo state.edu	Detection of misfolded proteins and other biomarkers in the blood and cerebral spinal fluid of the naturally occuring syndrom canine cognitive decline	Other proteinopathies
9.7.	Panning Pearce, M.	m.pearce@uscience s.edu	Phagocytic glia mediate prion-like spreading of mutant huntingtin aggregates in Drosophila brain s	Other proteinopathies
9.8.	Sharma, N.	nitivinay@yahoo.c o.in, nitisharma@gacho n.ac.kr	Compilation of Research on Prion therapeutics	Other proteinopathies

9.9.	Wickner, R.	wickner@helix.nih.	Anti-prion systems	Other
		gov	in yeast cooperate	proteinopathies
			to cure or prevent	
			the generation of	
			nearly all variants	
			of the [PSI+] and	
			[URE3] prions in	
			normal cells	